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A B S T R A C T

Data-based geomagnetic models are key for mapping the global field, predicting the movement of magnetic
poles, understanding the complex processes happening in the outer core, and describing the global expression
of magnetic field reversals. There exists a wide range of models, which differ in a priori assumptions and
methods for spatio-temporal interpolation. A frequently used modeling procedure is based on regularized least
squares (RLS) spherical harmonic analysis, which has been used since the 1980s. The first version of this
algorithm has been written in Fortran and inspired many different research groups to produce versions of the
algorithm in other programming languages, either published open-access or only accessible within the institute.
To open up the research field and allow for reproducibility of results between existing versions, we provide
a user-friendly open-source Python version of this popular algorithm. We complement this method with an
overview on background literature – concerning Maxwells equations, spherical harmonics, cubic B-Splines, and
regularization – that forms the basis for RLS geomagnetic models. We included six spatial and two temporal
damping methods from literature to further smooth the magnetic field in space and time. Computational
resources are kept to a minimum by employing the banded structure of the normal equations involved and
incorporating C-code (with Cython) for matrix formation, enabling a massive speed-up. This ensures that the
algorithm can be executed on a simple laptop, and is as fast as its Fortran predecessor. Four tutorials with
ample examples show how to employ the new lightweight and quick algorithm. With this properly documented
open-source Python algorithm, we have the intention to encourage current and new users to employ and further
develop the method.
1. Introduction

The geomagnetic field is generated by currents in the fluid outer
core of the Earth. The interaction of all these currents results in a mostly
dipolar magnetic field at the Earth’s surface. This field protects the
atmosphere against charged particles from the sun and shields electric
circuits from disturbances by the solar wind. To understand the geo-
magnetic field and predict its behavior in a global sense, geomagnetic
field models are paramount. Geomagnetic models integrate magnetic
data from around the world into one time-dependent, global picture.
Geomagnetic models are applied for many different purposes: from
predicting the movement of the geomagnetic poles to studying the
global surface expression of magnetic field reversals (e.g. Finlay et al.,
2020; Mahgoub et al., 2023b). Additionally, geomagnetic field models
function as a basis for better understanding the Earth’s fluid outer core.

Earth’s magnetic field is modeled by interpolating geomagnetic data
in space and time while applying certain constraints (regularization).

∗ Corresponding author.
E-mail address: f.out@uu.nl (F. Out).

It is the type of interpolation used and constrains applied that lead to
different models (Bloxham and Jackson, 1992). We focus on modeling
only the magnetic core field as function of historical, archeomagnetic,
and paleomagnetic datasets. Due to the type of data, we do not include
methods for separating crustal or external fields, as is necessary when
modeling satellite or observatory data, for example for constructing the
IGRF (Alken et al., 2021). The modeling algorithm in focus is based on
regularized least squares (RLS) techniques. RLS models require geomag-
netic data, preferably evenly distributed around the globe, and spatial
and temporal smoothness constraints to invert for a finite set of Gauss
coefficients that describe the geometry of the magnetic field by dividing
the field into specifically structured field configurations, such as a
dipolar and quadrupolar field. Due to the specific numerical structure of
the RLS approach, efficient inversion algorithms have been developed.
Recently, statistical approaches mostly based on Gaussian processes
have been employed to construct distributions over geomagnetic field
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models (Leonhardt and Fabian, 2007; Hellio and Gillet, 2018; Arneitz
t al., 2019; Mauerberger et al., 2020; Nilsson and Suttie, 2021).

The motivation behind these statistical approaches is the assessment
f uncertainties in the models, due to uncertainties in the data, in
he assumptions, and in the modeling itself. Statistical models can be
omputationally intense, although current developments are speeding
p certain types of models (Schanner et al., 2022). Originally, the RLS

techniques were developed in a Bayesian framework, and can be con-
sidered statistical models as well. In this sense, regularization employed
in RLS techniques specifies a prior distribution. It is also possible to
construct posterior distributions for the RLS models. However, over the
years this perspective has been lost and only the maximum posterior
point estimate, which coincides with the RLS solution, has been con-
sidered (Bloxham and Jackson, 1992; Jackson et al., 2000; Korte and

onstable, 2003). The difference between the recent statistical models
and the RLS models is therefore more in the philosophy of how they
are used and interpreted than in a strict methodological sense.

RLS models have a widespread use in modeling the geomagnetic
ield. The method has been established for quite some time (Shure

et al., 1982; Bloxham and Jackson, 1992; Holme and Bloxham, 1996;
Jackson et al., 2000) and is frequently used for modeling historical-to-
millennial scale fields and snapshots thereof (e.g. Bloxham and Jackson,
1992; Constable et al., 2000; Korte and Constable, 2003; Korte et al.,
2009; Licht et al., 2013; Pavón-Carrasco et al., 2014; Nilsson et al.,
2014; Panovska et al., 2015, 2018; Finlay et al., 2020) and magnetic
eversals (e.g. Mahgoub et al., 2023b). Gauss coefficients that vary

smoothly in time, expressing the changing geometry of the field, are
obtained by means of cubic B-Splines (De Boor, 1978; Constable and
arker, 1988). Unfortunately, the inverse problem to obtain these Gauss
oefficients is badly conditioned due to poor data coverage. Therefore,
o find a physically reasonable model, the problem is regularized by
dditional spatial and temporal constraints. These constraints can range
rom minimizing heat flux through the core-mantle boundary (CMB) to
inimizing the acceleration of the vertical component of the magnetic

field at the CMB (Gubbins, 1975; Korte and Constable, 2003). These
xtra constraints are an important reason for RLS models to output
nrealistically low uncertainties for Gauss coefficients.

Nevertheless, the relatively easy interpretation of Gauss coefficients
in terms of field geometry still make RLS models widely used in the ge-
omagnetic community (e.g. Mahgoub et al., 2023b). The RLS algorithm
equires fast numerical calculations to process global geomagnetic
atasets (between 10.000 and 100.000 records). This first version of
his algorithm has been written in the Fortran programming language,

famous for its high speed with numerical calculations, where compiling
eomagnetic data into a model is a matter of minutes. Unfortunately,
ortran is infamous for its minimal error handling and, more impor-

tantly, these Fortran algorithms have sparse documentation. However,
this Fortran algorithm was distributed in many different versions to
ther groups who changed it into their own version. Since a central
ersion of the algorithms does not exist, it is difficult to reproduce
esults of a specific version with another version of the same base
lgorithm (see discussion in Korte et al., 2009). Furthermore, finding,

understanding, executing, and checking the different versions can be a
time-consuming endeavor, potentially discouraging new users to either
generate RLS geomagnetic models or use it as a prior for statistical
models.

To tackle these issues, we provide a completely open-source repos-
tory for the RLS algorithm and present the accompanying theory
n this manuscript. With the help of abundant literature on the RLS

technique (Shure et al., 1982; Gubbins and Bloxham, 1985; Bloxham,
1987; Constable and Parker, 1988; Bloxham and Jackson, 1992; Korte
and Constable, 2003; Korte et al., 2009; Mahgoub et al., 2023b) and
he help of its users, we have rewritten the Fortran version of the

RLS geomagnetic algorithm into a Python 3 library. We have chosen
 s

2 
Python because it is a modern language that puts emphasis on code
readability. The created library (Out and Schanner, 2024) is easy to
use for anybody with basic Python skills, while retaining the speed and
functionalities of the original Fortran algorithm. For this purpose, we
restructured the algorithm in a more logical way; introducing separate
lasses for loading data and performing calculations. To further help
he user, we have included tutorials to introduce all aspects of the
lgorithm. This enables future users to easily modify and develop the
ibrary even further. After providing an overview of the theory and
mplementation of the algorithm, we will show functionality of the
lgorithm and compare the efficiency of the library against its Fortran
redecessor.

2. Theoretical background

Geomagnetic field modeling allows for interpolation of paleomag-
etic data in both space and time, while accounting for measurement
rrors. The temporal interpolation is obtained by cubic B-splines, which
s discussed in Section 2.2; the spatial interpolation is obtained with

spherical harmonics, based on two of Maxwell’s equations:
∇⃗ ⋅ 𝐵⃗ = 0 (divergence free)

⃗  × 𝐵⃗ = 𝜇0(𝐽 + 𝜖0
𝜕𝐸⃗
𝜕 𝑡 ) = 0⃗ (source free),

(1)

with 𝐵⃗ the magnetic field, 𝜇0 the vacuum permeability (4𝜋× 10−7 H/m),
⃗ the electric current density, 𝜖0 the vacuum permittivity, and 𝐸⃗ the
lectric field. We apply Helmholtz decomposition to the magnetic field
⃗, separating it into a scalar and a vector field: 𝐵⃗ = −∇⃗𝑊 +∇⃗ ×𝐹 . Since
e evaluate the field outside the outer core (source free assumption),
e only retain the scalar part. After combining this scalar field with the
ivergence free assumption, we acquire Laplace’s equation (∇2𝑊 = 0),
nd solve that in a spherical coordinates system (derivation can be
ound in e.g. Lowrie, 2011). Furthermore, external magnetic sources
ionosphere) are ignored, because their contribution to the total mag-

netic signal is negligible compared to internal sources in the historical
and longer time context; the scalar potential 𝑊 is then given by:

𝑊 (𝑟, 𝜃 , 𝜙) = 𝑅
∞
∑

𝓁=1

𝓁
∑

𝑚=0

(

𝑅
𝑟

)𝓁+1
(𝑔𝑚𝓁 cos(𝑚𝜙) + ℎ𝑚𝓁 sin(𝑚𝜙))𝑃𝑚

𝓁 (cos(𝜃)), (2)

with 𝑅 the radius of the Earth (6371.2 km) and 𝑟, 𝜃, and 𝜙 the
radius, co-latitude, and longitude, respectively, of the location where
the potential is evaluated. 𝑃𝑚

𝓁 (cos(𝜃)) are the Schmidt semi-normalized
associated Legendre polynomials of degree 𝓁 and order 𝑚. Lastly, the
variables 𝑔𝑚𝓁 and ℎ𝑚𝓁 are the Gauss coefficients (𝑔01 , 𝑔11 , ℎ11, 𝑔

0
2 , 𝑔12 , ℎ12,

etc.), which describe the global geomagnetic field geometry.

2.1. Modeling equations

Paleomagnetic information often include inclination, declination,
nd intensity data, which are non-linearly related to the magnetic
otential. Before going into detail on this non-linearity, we first state
ow the components of the magnetic field vector relate linearly to
he Gauss coefficients. The vector consists of a northern (𝐵𝑥), eastern
𝐵𝑦), and vertical (𝐵𝑧) component in a geocentric dataframe (although
ost geomagnetic data comes in a geodetic dataframe, see Section 3.1).
hese three components are obtained by taking the derivative of the
calar potential (Eq. (2)) with respect to the co-latitude, longitude, and
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⎥

⎥

⎥
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⎢

⎢
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⎢

⎣

− sin(𝜃1) cos(𝜙1) cos(𝜃1) sin(𝜙1) cos(𝜃1) ⋯ sin(𝐿𝜙1)
𝑑(𝑃𝐿

𝐿 (cos(𝜃)))
𝑑 𝜃

|

|

|𝜃=𝜃1
0 sin(𝜙1) − cos(𝜙1) ⋯ −𝐿 cos(𝐿𝜙1)

sin(𝜃1)
𝑃𝐿
𝐿 (cos(𝜃1))

−2 cos(𝜃1) −2 cos(𝜙1) sin(𝜃1) −2 sin(𝜙1) sin(𝜃1) ⋯ −(𝐿 + 1) sin(𝐿𝜙1)𝑃𝐿
𝐿 (cos(𝜃1))

⋮ ⋮ ⋮ ⋱ ⋮
−2 cos(𝜃𝑄) −2 cos(𝜙𝑄) sin(𝜃𝑄) −2 sin(𝜙𝑄) sin(𝜃𝑄) ⋯ −(𝐿 + 1) sin(𝐿𝜙𝑄)𝑃𝐿
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⎥

⎥

⎥
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⎢
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⎢
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⎢

⎣
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𝑔11
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⋮
ℎ𝐿𝐿

⎤

⎥

⎥

⎥

⎥

⎥

⎦
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radius, respectively:

𝐵𝑥 = −𝐵𝜃 = 1
𝑟
𝜕 𝑊
𝜕 𝜃

=
∞
∑

𝓁=1

𝓁
∑

𝑚=0

(

𝑅
𝑟

)𝓁+2
(𝑔𝑚𝓁 cos(𝑚𝜙) + ℎ𝑚𝓁 sin(𝑚𝜙))

𝑑(𝑃𝑚
𝓁 (cos(𝜃)))
𝑑 𝜃

𝐵𝑦 = 𝐵𝜙 = −1
𝑟 sin(𝜃)

𝜕 𝑊
𝜕 𝜙

=
∞
∑

𝓁=1

𝓁
∑

𝑚=0

(

𝑅
𝑟

)𝓁+2
(𝑔𝑚𝓁 sin(𝑚𝜙) − ℎ𝑚𝓁 cos(𝑚𝜙)) 𝑚

sin(𝜃)
𝑃𝑚
𝓁 (cos(𝜃))

𝐵𝑧 = −𝐵𝑟 =
𝜕 𝑊
𝜕 𝑟

=
∞
∑

𝓁=1

𝓁
∑

𝑚=0
−(𝓁 + 1)

(

𝑅
𝑟

)𝓁+2
(𝑔𝑚𝓁 cos(𝑚𝜙) + ℎ𝑚𝓁 sin(𝑚𝜙))𝑃𝑚

𝓁 (cos(𝜃))

(3)

With these equations in place, a system can be set-up that relates
bservations to Gauss coefficients. For that purpose, the equations need
o be truncated at a finite degree 𝐿 to allow for computation. To ensure
table solution, most energy of the magnetic field should be described
y Gauss coefficients with a degree far smaller than the chosen cut-
ff degree. The forward equation for solving 𝐿 degree coefficients with

magnetic measurement locations (𝐵𝑥, 𝐵𝑦, and 𝐵𝑧 are measured) is
s in Box I, or 𝐵⃗ = 𝐆𝑚⃗. If there are more observations than unknown

parameters, the vector 𝑚⃗ can be obtained with a least squares inversion.

2.2. Time-dependency

Independently modeling the magnetic field for snapshots of time
ay result into Gauss coefficients that strongly oscillate in time if
o appropriate measures are taken (e.g. Constable et al., 2000). By

formulating the problem (Eq. (4)) as function of time, Constable and
arker (1988) show that time-dependence can be approximated by
ubic B-Splines. Cubic B-Splines are piece-wise cubic polynomials: they
re a set of individual polynomials joined together at knot points in
uch a way that they are continuous up to the second derivative. This
ey property of cubic B-Splines allows a range of temporal damping

types (see Section 2.4).
Cubic B-Splines enable a geomagnetic field model that varies contin-

ously through time by solving for model coefficients per spline. These
pline coefficients are time-independent, and should not be directly
nterpreted. By combining these spline coefficients of different splines,
he usual time-dependent Gauss coefficients 𝑚⃗(𝑡) are retrieved:

𝑚⃗(𝑡) =
𝑘𝑚𝑎𝑥
∑

𝑘=1
𝑚⃗𝑘𝑀𝑘

3 (𝑡), (5)

with 𝑚⃗(𝑡) the Gauss coefficients at time step 𝑡, 𝑚⃗𝑘 all spline coefficients
or spline 𝑘, 𝑀𝑘

3 (𝑡) the factor that represent what part of spline 𝑘
elongs to the Gauss coefficients at time 𝑡, and 𝑘𝑚𝑎𝑥 the total amount
f splines used. Fig. 1 shows how to interpret Eq. (5) with 𝑘𝑚𝑎𝑥 equal
o ten. To reconstruct, for example, Gauss coefficients at time 𝑡 = 2, the
oefficients of spline 2, 3, and 4 would be required in the ratio 1/6,
/6, 1/6, respectively. In most cases, four splines are usually needed
or reconstruction: Gauss coefficients at 𝑡 = 3.5 are compiled by splines
, 4, 5, and 6 in the ratio 1/48, 23/48, 23/48, and 1/48, respectively.
3 
Hence, to model Gauss coefficients for 1 ≤ 𝑡 < 8, ten splines pinned by
fourteen equally spaced knot points are required: eight knots on 𝑡 = 1
to 8, three knot points before 𝑡 = 1, and three knot points after 𝑡 = 8.

Additionally, Fig. 1 shows how paleomagnetic data, observed be-
tween 𝑡 = 1 and 𝑡 = 8, translates into the 10 splines used in a
model. For example, spline 1 solely consists of paleomagnetic data
for 1 ≤ 𝑡 < 2, while spline 5 consists of data for 2 ≤ 𝑡 < 6. This
illustrates the reason why we should not interpret Gauss coefficients
at both ends of the time series, because these coefficients are based
on splines that contain sparse data (i.e. splines 1, 2, 3, 8, 9, and 10)
and could therefore introduce unwanted behavior. Gauss coefficients
modeled within two points of the ends of the time series are therefore
usually not considered.

With the introduction of cubic B-Splines, the equations can be set-up
on a per-spline basis by applying Eq. (5) to Eq. (4). Given 𝑇 time steps,
𝑇 + 2 (= 𝑘𝑚𝑎𝑥) spline coefficients are solved at once (see Box II),
where 𝐵𝑇 stores all magnetic data (𝐵𝑥, 𝐵𝑦, 𝐵𝑧) at every location be-
ween time step 𝑡 = 𝑇 and time step 𝑡 = 𝑇 + 1, 𝑡𝑇 contains the time
f all data point falling between 𝑡 = 𝑇 and 𝑡 = 𝑇 + 1, and 𝐆 ⃗𝑡𝑇

represents
he Green’s matrix relating all magnetic data of that time interval to
he spline coefficients 𝑚⃗𝑘.

To clarify the different matrix and vector dimensions we present
he following example for the first row: for 1 ≤ 𝑡 < 2, we assume 20

observations of the magnetic field (any combination of 𝐵𝑥, 𝐵𝑦, and 𝐵𝑧)
to infer a model of degree 3. Since there are 20 observations, 𝐵1 and
𝑡1 both have dimensions 20 × 1. These 20 observations determine, via
the Green’s matrix 𝐆𝑡1

and the spline weighing matrix 𝐌, the Gauss
oefficients for the first four splines (see Fig. 1). Since the degree of the
odel is 3, 𝑚⃗1, 𝑚⃗2, 𝑚⃗3, and 𝑚⃗4 each consists of 15 Gauss coefficients.
o link these 15 parameters per spline to the observations, 𝐆𝑡1

has
dimensions of 20 × 15. 𝑀 is a diagonal matrix of 20 × 20 that
ontains the spline coefficient (see Fig. 1) on its diagonal, coupling each

observation to the one of the four splines as a function of time. The total
dimension of 𝑀𝑘

3 (𝑡1)𝐆𝑡1
is 20 × 15 and the dimension of each 𝟎-matrix

is hence 20 × 15.
We now extend the complete matrix beyond the first row; in total we

model 30 time steps, from 𝑡 ≥ 1 to 𝑡 < 31, to infer a degree 3 model. This
means that we need at least 32 splines and 15 Gauss coefficients per
spline. If we also assume that every time step contains 20 observations,
then the vector containing all observations has a dimension of 600 × 1,
the matrix has 600 rows and (15 ⋅ 32=) 480 columns, and the vector
containing all Gauss coefficients in Eq. (6) has a dimension of 480 × 1.

2.3. Non-linearity

Most paleomagnetic data consist of a combination of inclination
𝐼 , declination 𝐷, and intensity 𝐹 magnetic data. They are related
as follows to the north, east, and vertical component, with the extra
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Fig. 1. Example of 10 Cubic B-Splines on 14 knot points covering 𝑡 = 1 till 𝑡 = 8.
⎡

⎢

⎢
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⎢

⎢

⎣

𝐵1
𝐵2
𝐵3
⋮
𝐵𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐌1
3(𝑡1)𝐆𝑡1

𝐌2
3(𝑡1)𝐆𝑡1

𝐌3
3(𝑡1)𝐆𝑡1

𝐌4
3(𝑡1)𝐆𝑡1

𝟎 ⋯ 𝟎
𝟎 𝐌2

3(𝑡2)𝐆𝑡2
𝐌3

3(𝑡2)𝐆𝑡2
𝐌4

3(𝑡2)𝐆𝑡2
𝐌5

3(𝑡2)𝐆𝑡2
⋯ 𝟎

𝟎 𝟎 𝐌3
3(𝑡3)𝐆𝑡3

𝐌4
3(𝑡3)𝐆𝑡3

𝐌5
3(𝑡3)𝐆𝑡3

⋯ 𝟎
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮

𝟎 𝟎 𝟎 𝟎 𝟎 ⋯ 𝐌𝑘𝑚𝑎𝑥
3 (𝑡𝑇 )𝐆 ⃗𝑡𝑇

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑚⃗1

𝑚⃗2

𝑚⃗3

𝑚⃗4

𝑚⃗5

⋮
𝑚⃗𝑘𝑚𝑎𝑥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (6)
Box II.
horizontal component 𝐵ℎ given for convenience:

𝐵ℎ =
√

𝐵2
𝑥 + 𝐵2

𝑦

𝐹 =
√

𝐵2
𝑥 + 𝐵2

𝑦 + 𝐵2
𝑧

𝐼 = ar ct an
(

𝐵𝑧
𝐵ℎ

)

𝐷 = ar ct an
(𝐵𝑦

𝐵𝑥

)

(7)

These components depend non-linearly on the Gauss coefficients, re-
quiring functions that are no longer solvable by standard least-squares
inversion techniques. One way of solving the resulting non-linear
equations is by applying the iterative inversion scheme introduced
by Bloxham and Jackson (1992), based on work of Lünberger (1969).
This iterative inversion scheme updates an estimate of the model
coefficients until a required level of convergence has been reached. For
this convergence, the algorithm relies on the first derivative of forward
observations with respect to the model coefficients 𝑚⃗:

𝑚⃗𝑖+1 = 𝑚⃗𝑖+ ((𝐌3𝐀𝑖)𝑇𝐂𝐞
−1𝐌3𝐀𝑖+𝐂𝐦

−1)−1((𝐌3𝐀𝑖)𝑇𝐂𝐞
−1𝑒𝑖−𝐂𝐦

−1𝑚⃗𝑖), (8)

with 𝑚⃗𝑖+1 containing the updated spline coefficients after iteration 𝑖 for
all splines and 𝐂𝐞 the data covariance matrix containing the variances
of the measurements on its diagonal. These variances should be chosen
based on the quality of the input data. 𝐂𝐦 is the regularization matrix
(discussed in Section 2.4) and 𝑒𝑖 the difference (residual) between the
measurements (data) 𝑑 and the forward problem 𝑓 (𝑚⃗). The forward
problem provides predictions of the magnetic field (𝐵∗) based on evalu-
ating the model at times and locations of the respective measurements.
𝐀𝐢 is the matrix build of the partial derivatives (Fréchet derivatives)
of the forward observation with respect to the model parameters,
evaluated at the current model 𝑚⃗𝑖 (see matrix in Eq. (6)). 𝐌3 ports the

𝐀𝐢-matrix, or Fréchet matrix, into cubic B-Splines (see Figure S1).

4 
The partial derivatives of the northward, eastward, and vertical
magnetic component form the basis for the partial derivatives of the
four non-linear magnetic data types (𝐵ℎ, 𝐼 , 𝐷, and 𝐹 ) with respect to
𝑚⃗. The partial derivative vector for one measurement (𝐀⃗, a vector in
this case) is:
𝐀⃗𝐵ℎ

=
𝜕 𝑓𝐵ℎ

(𝑚⃗)

𝜕 ⃗𝑚 = 𝜕
𝜕 ⃗𝑚

√

𝐵∗
𝑥
2 + 𝐵∗

𝑦
2 = 𝜕

𝜕 ⃗𝑚
√

(𝐀⃗𝐵𝑥
⋅ 𝑚⃗)2 + (𝐀⃗𝐵𝑦

⋅ 𝑚⃗)2

=
2(𝐀⃗𝐵𝑥

⋅ 𝑚⃗)𝐀⃗𝐵𝑥
+ 2(𝐀⃗𝐵𝑦

⋅ 𝑚⃗)𝐀⃗𝐵𝑦

2
√

𝐵∗
𝑥
2 + 𝐵∗

𝑦
2

=
𝐵∗
𝑥𝐀⃗𝐵𝑥

+ 𝐵∗
𝑦 𝐀⃗𝐵𝑦

𝐵∗
ℎ

𝐀⃗𝐹 =
𝜕 𝑓𝐹
𝜕 ⃗𝑚

= 𝜕
𝜕 ⃗𝑚

√

𝐵∗
𝑥
2 + 𝐵∗

𝑦
2 + 𝐵∗

𝑧
2 = 𝜕

𝜕 ⃗𝑚
√

(𝐀⃗𝐵𝑥
⋅ 𝑚⃗)2 + (𝐀⃗𝐵𝑦

⋅ 𝑚⃗)2 + (𝐀⃗𝐵𝑧
⋅ 𝑚⃗)2

=
2(𝐀⃗𝐵𝑥

⋅ 𝑚⃗)𝐀⃗𝐵𝑥
+ 2(𝐀⃗𝐵𝑦

⋅ 𝑚⃗)𝐀⃗𝐵𝑦
+ 2(𝐀⃗𝐵𝑧

⋅ 𝑚⃗)𝐀⃗𝐵𝑧

2
√

𝐵∗
𝑥
2 + 𝐵∗

𝑦
2 + 𝐵∗

𝑧
2

=
𝐵∗
𝑥𝐀⃗𝐵𝑥

+ 𝐵∗
𝑦 𝐀⃗𝐵𝑦

+ 𝐵∗
𝑧 𝐀⃗𝐵∗

𝑧

𝐹 ∗

𝐀⃗𝐼 =
𝜕 𝑓𝐼 (𝑚⃗)
𝜕 ⃗𝑚 = 𝜕

𝜕 ⃗𝑚 ar ct an
(𝐵∗

𝑧

𝐵∗
ℎ

)

= 𝜕
𝜕 ⃗𝑚 ar ct an

( 𝐀⃗𝐵𝑧
⋅ 𝑚⃗

𝐀⃗𝐵ℎ
⋅ 𝑚⃗

)

= 1

1 + 𝐵∗
𝑧
2

𝐵∗
ℎ
2

×
𝐵∗
ℎ𝐀⃗𝐵𝑧

− 𝐀⃗𝐵ℎ
𝐵∗
𝑧

𝐵∗
ℎ
2

=
𝐵∗
ℎ𝐀⃗𝐵𝑧

− 𝐵∗
𝑧 𝐀⃗𝐵ℎ

𝐹 ∗2

𝐀⃗𝐷 =
𝜕 𝑓𝐷(𝑚⃗)
𝜕 ⃗𝑚 = 𝜕

𝜕 ⃗𝑚 ar ct an
(𝐵∗

𝑦

𝐵∗
𝑥

)

= 𝜕
𝜕 ⃗𝑚 ar ct an

( 𝐀⃗𝐵𝑦
⋅ 𝑚⃗

𝐀⃗𝐵𝑥
⋅ 𝑚⃗

)

= 1

1 + 𝐵∗
𝑦
2

𝐵∗
𝑥
2

×
𝐵∗
𝑥𝐀⃗𝐵𝑦

− 𝐵∗
𝑦 𝐀⃗𝐵𝑥

𝐵∗
𝑥
2

=
𝐵∗
𝑥𝐀⃗𝐵𝑦

− 𝐵∗
𝑦 𝐀⃗𝐵𝑥

𝐵∗
ℎ
2

,

(9)
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with ⋅ the dot-product. The Fréchet matrix is assembled by adding the
respective rows for each datum together. The matrix requires field pre-
dictions (𝐵∗) to calculate partial derivatives. Therefore, a user should
input an initial model to calculate these field predictions. Usually an
axial dipole is a safe initial guess (e.g. Korte and Constable, 2003). After
he first iteration, these forward field predictions originate from the

model itself. For the first couple of iterations, the forward calculations
re very crude approximations of reality, that change strongly with
very iteration step. Eventually, the changes should get smaller and
onverge, resulting into a relatively stable matrix 𝐀. Depending on
umber and quality of data, regularization might be required to further
tabilize the solution.

2.4. Regularization

Constructing geomagnetic field models from noisy and sparse pale-
magnetic data is an ill-posed inverse problem, with unstable solutions
hat can show fast oscillations and large overswingings. With the

available archeo- and paleomagnetic data we cannot expect to resolve
small-scale structures and rapid variations. These unresolved cases
leads to unstable solutions that typically have too much power at
high spherical harmonic degrees. Field models are therefore derived
using regularization to reduce the energy stored in Gauss coefficients
of higher degree and to smooth out irregularities by constraining the
inversion scheme with an additional term, the regularization or model
covariance matrix 𝐂𝐦 (Eq. (8)). This term is composed of both a spatial
nd a temporal damping component:

𝐂𝐦
−1 = 𝜍𝐒−1 + 𝜏𝐓−1 (10)

𝐒−1 and 𝐓−1 are symmetric matrices containing the spatial and temporal
damping, and 𝜍 and 𝜏 are weighing factors determining how much
emphasis is applied to damping. The desired damping parameters can
be obtained by e.g. inspection of powerspectra of the Gauss coefficients,
y finding the knee-point in residual-energy plots, by comparison of
pectral expectations of known historical and modern fields, or through

the cross-validation method (Korte et al., 2009; Panovska et al., 2012;
Licht et al., 2013). However, setting a good temporal and spatial
damping parameter is not a straightforward task. Setting both damping
parameters too high will result into a smoothly varying dipolar field
with high data residuals, while a too low setting will result into
physically unreasonable models. It is therefore paramount to always
compare modeled observations to input data, and consider whether the
model is representative for the data it is provided with.

In our algorithm we have included six different constraints for the
spatial damping matrix 𝐒−1, and two constraints for the temporal damp-
ing matrix 𝐓−1. All damping methods rely on minimizing the relevant
property of the magnetic field at the core-mantle boundary (CMB) at
3485 km distance from the center of the Earth. The complexity of
he relevant property is constrained by minimizing the integral of that

magnetic field property over the CMB. This minimization translates into
a degree-dependent damping function (𝑆−1(𝓁) or 𝑇 −1(𝓁)) of the Gauss
coefficients in the spectral domain (see Table 1). First, the six spatial
amping methods are described here:

• (1) Uniform damping: every model parameter receives the same
amount of damping.

• (2) Constraining surface heat flux through the core mantle bound-
ary (Gubbins, 1975): through minimization of the curl of the
magnetic field, the heat flux through the CMB is constrained.
If actual values are used, this method gives a relatively weak
constraint to the Gauss coefficients, because only the lower bound
of the heat flux out of the core is known. We provide a simplified
implementation in the spectral domain that does not include all
natural constants, resulting into an underestimation of realistic
heat flux values (see Korte et al., 2009). The full derivation is
presented in Backus et al. (1996).
 w

5 
Fig. 2. Weight of all damping types on Gauss coefficients per degree. Physical basis
of all damping is summarized in Table 1. Note that ‘temporal damping’ represents
both minimizing velocity and minimizing acceleration of the magnetic field, since their
spectral representation is the same.

• (3) Minimizing the energy dissipation through the CMB (Gubbins
and Bloxham, 1985; Bloxham, 1987): fluid motions in the outer
core can increase small scale feature complexity through advec-
tion, which should be smoothed out by diffusion, dictated by
the diffusion equation. Geomagnetic models deal with small scale
complexity by storing energy in higher degree Gauss coefficients.
These high degree coefficients are most of the time not necessary
to explain the data, making these coefficients susceptible to data
contamination. To reduce model complexity, diffusion and advec-
tion are minimized. The full derivation is presented by Bloxham
(1987).

• (4) Minimal damping: This damping method provides minimal
constraints to reduce magnetic energy in the higher degrees
(Lowes, 1974; Shure et al., 1982).

• (5) Smooth radial component: by minimizing the horizontal
derivative of the radial component at the CMB, smoothed radial
magnetic components are obtained (Shure et al., 1982; Holme and
Bloxham, 1996).

• (6) Minimizing external magnetic energy: Holme and Bloxham
(1996) present a damping function that minimizes ionospheric
influences in satellite magnetic data on Uranus and Neptune.
In the context of archeomagnetic and paleomagnetic data this
method has no physical meaning.

Effectively, the different methods modify the slope of the geomag-
netic power spectrum (see Fig. 2): the energy stored in the Gauss
coefficients summed per degree (Lowes, 1974). The Ohmic heating
constraint (Gubbins, 1975) is the most widely used in paleomagnetic
context.

There are two methods implemented to damp the Gauss coefficients
temporally. One form of temporal damping is applied by minimizing
he rate (7. in Table 1) at which the radial magnetic field changes at the

CMB. The other form involves minimizing the second derivative (8. in
Table 1) at which the radial magnetic field changes at the CMB (Korte
and Constable, 2003; Korte et al., 2009). The first temporal method
promotes a constant magnetic field, while the second method leads
to a linearly changing magnetic field through time. Note that both
damping methods only work because cubic B-Splines have a second
time derivative. All damping types are summarized in Table 1 and their

eight on the Gauss coefficients per degree are plotted in Fig. 2.
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Table 1
Overview of spatial and temporal damping types applied at the core-mantle boundary (CMB). A damping term function is obtained
by translating a physical constraint into the spectral domain. This damping function returns a factor per model parameter depending
on degree (see Fig. 2). 𝑅⨁ indicates the radius of the Earth, 𝑅CMB is the radius of the core-mantle boundary (CMB), and 𝛥 indicates
the angular component of 𝑟2∇2.

Damping type Physical constraint Damping term function

1. Uniform – 𝑆−1(𝓁) = 1
2. Ohmic heating ∫core(∇ × 𝐁)2𝑑 𝑉 𝑆−1(𝓁) = 4𝜋 𝑅⨁

𝑅CMB

2𝓁+3 (𝓁+1)(2𝓁+1)(2𝓁+3)
𝓁

3. Energy dissipation ∮CMB 𝐵𝑟
𝛥𝐵𝑟

𝑟2
𝑑 𝑆 𝑆−1(𝓁) = 4𝜋 𝑅⨁

𝑅CMB

2𝓁+4 (𝓁+1)2𝓁4

2𝓁+1

4. Minimal damping ∫core |𝐁|
2𝑑 𝑉 𝑆−1(𝓁) = 4𝜋 𝑅⨁

𝑅CMB

2𝓁+4
(𝓁 + 1)

5. Smooth core ∮CMB |∇(𝐵𝑟)|
2𝑑 𝑆 𝑆−1(𝓁) = 4𝜋 𝑅⨁

𝑅CMB

2𝓁+6 𝓁(𝓁+1)3

2𝓁+1

6. External energy ∫ ∞
𝑅CMB

|𝐁|2𝑑 𝑉 𝑆−1(𝓁) = 4𝜋 𝑅⨁

𝑅CMB

2𝓁+1 𝓁+1
2𝓁+1

7. Minimize rate ∮CMB
( 𝜕 𝐵𝑟

𝜕 𝑡
)2𝑑 𝑆 𝑇 −1(𝓁) = 4𝜋 𝑅⨁

𝑅CMB

2𝓁+4 (𝓁+1)2

2𝓁+1

8. Minimize 2nd derivative ∮CMB
( 𝜕2𝐵𝑟

(𝜕 𝑡)2
)2𝑑 𝑆 𝑇 −1(𝓁) = 4𝜋 𝑅⨁

𝑅CMB

2𝓁+4 (𝓁+1)2

2𝓁+1
d

d

W

r
a
a
T

m
s

i
r
d
𝑔
e

After choosing a spatial or temporal damping type and determining
the damping terms per spherical harmonic degree, the damping matrix
is constructed. The individual elements of this matrix are obtained by
integrating the specific function (see Table 1) over time for a specific
egree (𝓁) and spline combination. For all damping types this elements
re constructed in a similar way, e.g. for minimal damping we obtain
or degree 𝓁 and splines 3 and 4 (covering knot points 4–7 together,
ee Fig. 1):

𝐒−1(𝓁, 3, 4)

= ∫𝑡 ∫core
|𝐁|2𝑑 𝑉 𝑑 𝑡 ≃ 4𝜋

𝑅⨁

𝑅CMB

2𝓁+4

(𝓁 + 1)∫
𝑝=7

𝑝=4
𝑀3

3 (𝑝)𝑀
4
3 (𝑝)𝑑 𝑝, (11)

By performing this integration for all degrees and possible spline
ombination we end up with the symmetric damping matrix, 𝐂𝐦

−1.
epending on the type of damping, we either have to integrate the
ubic B-Spline, its derivative (minimal velocity), or its second time
erivative (minimal acceleration). The derivatives of cubic B-Splines
re obtained with recursive formulae, described in De Boor (1978). A

graphical overview of the constructed matrix and vector is found in the
supplementary information (Figure S1).

3. Code implementation

The pymaginverse-library for creating geomagnetic models is written
in Python 3 and is separated in two parts: a class for preparing data-
input InputData, and a Python class for creating geomagnetic models
FieldInversion. Calculations for creating forward observations, damping
matrices, and (banded) Fréchet matrices have been moved to sepa-
rate modules located in sub-folders (see Out and Schanner, 2024).
Wherever possible, intense matrix formation and manipulation have
been optimized using C-extensions for Python (Cython). The main code
(FieldInversion) requires at least three fixed parameters: a timevector, a
maximum spherical harmonic degree, and a starting model. Besides the
main code, four tutorials are included to guide the user in generating
geomagnetic models and plotting relevant results.

3.1. Loading data

The first step for generating a geomagnetic model is having a
atabase. These data should be accompanied by measurement un-
ertainties; if no uncertainties are given either these data should be
anually assigned realistic error values or these data should be ex-

cluded. Furthermore, the user can adjust provided errors, remove data
outliers, or create different dataset subsets based on confidence in the
data (e.g. Korte et al., 2005; Pavón-Carrasco et al., 2014; Mahgoub
t al., 2023a). Paleomagnetic data forms the basis for geomagnetic
 t

6 
models, so great care should be taken to actually provide a solid
atabase to the model.

After the database is ready, it can be loaded into the model. Input-
Data accepts geomagnetic data in the form of a CSV-file or a Geomagia
ataset (Brown et al., 2015a,b). The algorithm expects magnetic data

in the geodetic dataframe, in which the coordinate system is based on
GS84 (ellipsoid fitted to Earth). Additionally, the algorithm accepts

geocentric data, where the coordinate system is based on a spherically
shaped Earth. When providing a CSV-file, the data should be stored
ow-wise, where each row contains at least time, latitude, longitude,
nd corresponding geomagnetic data. Hence, declination, inclination,
nd intensity with respective errors can be stored in the same row (see
utorials for further clarification).

3.2. Obtaining a model

After the data is loaded into the InputData-class, a geomagnetic
odel can be generated with the FieldInversion-class. A code snippet

howing basic usage of the algorithm is presented in Fig. 3. The Field-
Inversion-class is initiated by providing a time span with specific time
steps to be covered by the model. These time steps should be considered
carefully as sufficient paleomagnetic information should be present per
time step. It is tempting to create very small time steps to obtain a ‘high-
resolution’ model, but without enough data a smeared model based on
the data of nearby time steps is created. This model might seem very
good, but it holds little value for those specific time steps. Additionally,
changing the size of the time step involves changing the temporal
damping parameter to keep temporal fluctuations in order. Lastly, a
maximum spherical degree should be provided. In our example, we
want a degree 10 model covering −2000 to 1990 with steps of ten years.

After the class is created, the geomagnetic data, prepared by Input-
Data, is loaded with the prepare_inversion-method. Additionally, spatial
and temporal damping matrices are calculated based on user input.
Besides damping, this method also initializes the B-Spline basis and
Fréchet matrices. The iterative inversion is initiated by making a call
to the run_inversion-method. The method requires a starting model,
damping factors, and a maximum number of iterations. This method
is optimized to use the sparse structure of the involved matrices to
the fullest (see Eq. (6) and Figure S1), with individual matrix elements
being composed with Cython. The resulting matrices are banded and
positive definite, so they are efficiently inverted using Cholesky factor-
zation. A realistic starting model should consist of 𝐿(𝐿 + 2) elements,
epresenting the Gauss coefficients in a spherical harmonic model of
egree 𝐿. The coefficients are first ordered by degree, then by order:
0
1 , 𝑔11 , ℎ11, 𝑔

0
2 , 𝑔12 , ℎ12, etc. The number of iterations should be set high

nough to allow for convergence. The user can input a threshold for
he change in RMS residual between iterations (𝑟 and 𝑟 ); when
𝑖 𝑖+1
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Fig. 3. Code snippet for loading data and generating a geomagnetic field model, using both the InputData and FieldInversion-class.
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the threshold is larger than 𝑟𝑖+1−𝑟𝑖
𝑟𝑖

, the iterative inversion is halted.
owever, best practice is to observe the residuals of the data between

terations; if these are not changing significantly, the model has likely
onverged.

It is not possible to decide which damping parameters retrieve the
‘best’ model up front. Optimal damping factors can be obtained by
weeping through models with different damping factors and compar-
ng data residuals against the damping norm (𝑚⃗𝑇𝐂𝐦

−1𝑚⃗, Korte and
onstable, 2003; Korte et al., 2009). We have included a tool for this

task: sweep_damping ; other methods for finding damping parameters can
be found in e.g. Panovska et al. (2012). We would like to stress here
hat selecting parameters by this criterion does not necessarily lead to

the best numerically stable model, i.e. a model that changes minimally
for a small data perturbation. Stability should be further investigated
by e.g. comparing geomagnetic models based on subsets of the original
dataset (Mahgoub et al., 2023b).

After damping parameters have been set, and the inversion has
run, the resulting Gauss coefficients can be saved in npy-format with
the save_coefficients-method or in csv-format with the coefficients_csv-
method. Besides the coefficients, data residuals and spatial+temporal
damping norms can be saved. Since a lot of geomagnetic field modeling
has been executed with Fortran libraries, Gauss coefficients can also be
saved in legacy Fortran-format. Furthermore, a method is included to
save the generated coefficients as a pymagglobal-model (Schanner et al.,
2020), allowing for further processing and advanced plotting.

Lastly, basic plotting tools are included in the Tutorials. These tools
llow users to plot Gauss coefficients through time, magnetic field
aps, residuals, powerspectra and secular variation (see Fig. 4). To

asses the influence of the age uncertainties, it is possible to run the
provided algorithm multiple times while bootstrapping the data (see
e.g. Korte et al., 2009, 2011; Constable et al., 1987). However, this is
not implemented in the presented version.
 c
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3.3. Benchmark

In order to ensure consistency and usability of the novel code, we
compare its results against an original Fortran implementation. Using
a reference dataset, the results of multiple inversions of both codes are
compared. Tests included in the codebase ensure that the output of
the Python 3 implementation agrees with the Fortran results. Initially,
we were hoping to achieve agreement within the machine precision
limit. However, we found that for some coefficients the output of the
Python implementation deviates up to 20 nT from the output of the
ortran version. This slight difference may be due to different precision

in the code (Fortran uses 32-bit double, while the numpy library
uses 64-bit) or due to different implementations of the matrix solving
algorithm. Fig. 5 shows the mean and maximum difference between all
coefficients of the Fortran and Python solution. The mean difference
is about 0.3 nT, while the maximal difference is at around 17 nT.
Fig. 6 shows the solutions for the two codes for multiple iterations.

ray lines indicate the solutions after the final (9th) iteration. Both
olutions are visually indistinguishable. After the second iteration, they
re also visually indistinguishable from the final solution, which agrees
or both implementations. The picture is similar for the higher order
oefficients.

To benchmark the code and prevent regressions, we include tests
that ensure that the Python solution does not deviate more than 25 nT
rom the Fortran solution, both after one and ten iterations. The level
f 25 nT is well below the precision that can be expected from paleo-
agnetic data. Benchmark dataset and coefficients are provided with

he git-repository of the code (Out and Schanner, 2024).
The most prominent critique brought forward against the Python

anguage is its slowness. Nowadays, many scientific libraries like
umpy and Scipy include a C, C++, or Fortran backend to lift heavy
omputational weight. By using inversion routines from the scipy
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Fig. 4. Example of plotting tools available in Tutorials. All plots are based on generated Holocene data using CALS10k.2 (Constable et al., 2016) with pymagglobal (Schanner et al.,
2020). (a) Degree 1 Gauss coefficients; red line indicates t = 500. (b–c) Powerspectra of magnetic field and secular variation per spherical harmonic degree at the CMB; these
plots are used to determine stability of damping parameters. (d) Radial magnetic field at the CMB plotted for t = 500.

Fig. 5. Absolute difference in the coefficient solution between the Fortran and Python implementation per iteration. The orange line shows the maximal difference while the blue
line shows the mean difference. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 6. Evolution of the solution for the axial dipole after multiple iterations of the inversion. The dashed line shows the solution of the Python implementation after 10 iterations.
The dash-dotted line shows the same for the Fortran code, but is visually indistinguishable from the Python solution. The Fortran (blue line) and Python (orange line) solutions
agree so well that no difference is visible. Both solutions have converged to the final solution already after the second iteration and the dashed line disappears behind the orange
ne. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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package, our Python implementation is able to keep up with its Fortran
redecessor. The bottleneck of our code was the construction of the
anded normal equation matrices. To circumvent this bottleneck, we
hanged the loop order from the original Fortran version. Our outer
oop runs over the matrix bands, while in Fortran the outer loop is
ver the data. We found our approach to be faster and implemented
his part of the algorithm in Cython, maintaining Python readability
ut gaining a massive speedup compared to pure Python.

Another benefit of the Cython implementation lies on its low mem-
ory usage. Numpy and other python libraries rely on array operations,
but the construction of the normal equations matrices is not well
uited for formulation on array basis, as the banded structure cannot
e utilized efficiently. This leads to large memory requirements when
unning the code. An early version in array formulation required more
han 15 GB of computer memory to build the matrices for a dataset
f about 10.000 observations, 401 spline knots and a cutoff degree
rder of 10. With the loop-based Cython implementation, due to ex-
loiting the banded structure, the code now requires about 400 MB
or the same dataset and can therefore be run comfortably on standard
otebooks.

The top panel of Fig. 7 provides a runtime comparison of the
Python implementation against the original Fortran version. As evident,
the runtimes are comparable, with our Python version being slightly
faster. The runtime benchmark was conducted on synthetic (non-linear)
declination, inclination, and intensity data, generated using pymag-
global (Schanner et al., 2020). For each implementation, data loading
routines, damping matrix construction, and one iteration were timed
using the CPU clock. Three runs were performed and the best of these
three was noted for evaluation. The model cutoff degree was set to 10.
When decreasing the cutoff degree, the Fortran code becomes slightly
faster than the Python version, but runtimes become so small that
9 
this advantage is negligible. On our testing machine, increasing the
cutoff degree beyond 14 is not possible with the Fortran reference we
were provided due to memory issues. The Python version maintains
practicable runtimes up to cutoff degree 20 and possibly beyond. A
runtime comparison for different cutoff degrees is shown in the bottom
panel of Fig. 7.

4. Conclusions

In this article we have introduced a modern Python 3 algorithm for
creating a time-dependent spherical harmonic model of the geomag-
etic core field. This algorithm is based on a frequently used Fortran

version, which circulates in the geomagnetic modeling community in
many different versions. To make this new algorithm appealing, we
ensured that the Python 3 algorithm is easy to install, user-friendly
given basic Python skills, and as fast as its Fortran predecessor. By
making use of the well developed banded structure of the involved

atrices, we have created a memory-efficient algorithm that can be
executed on a regular laptop. Additionally, the algorithm contains
methods to export the data to csv, a Fortran legacy format, and py-
agglobal format (Schanner et al., 2020), allowing further advanced

processing and plotting with established scripts and tools.
We have included four tutorials and numerous comments through-

ut the algorithm to showcase all functionalities and basic plotting
ptions. Combining this with a concise overview of background litera-
ure, we aim to centralize the RLS method. With this central repository,
e aim that (future) users can easily compare results of their geo-
agnetic model and further build on this, ensuring that this useful
ethod remains accessible to future generations of geomagnetic field

modelers.
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Fig. 7. Runtime benchmark of the Python 3 implementation (blue) against its Fortran predecessor (orange). Data and matrix setup and a single iteration of the inversion were
timed using the CPU clock. For each marker, three runs were performed per implementation and the best value is reported here. The top panel shows the runtime dependency
on datasets of varying size. The gray dashed lines indicate the number of data used to create exemplary models. The bottom panel shows the runtime dependency on the cutoff
degree. See the text for additional information. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Code availability section

The algorithm is publicly available and hosted in the Github repos-
itory at https://github.com/outfrenk/pymaginverse under a MIT Li-
cense. The algorithm is written in the Python, Cython, and C program-
ming languages. The codes utilize Python numerical libraries which
include Numpy (Harris et al., 2020), Scipy (Virtanen et al., 2020),
matplotlib (Hunter, 2007), Jupyter notebooks (Kluyver et al., 2016),
Cython (Behnel et al., 2011), pandas (WesMcKinney, 2010), and pysh-
ools (Wieczorek and Meschede, 2018).

All the codes and benchmarks from this study are published in the
public GitHub repository (Out and Schanner, 2024), version 1.1.
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